Using multi-objective sparrow search algorithm to establish active distribution network dynamic reconfiguration integrated optimization

نویسندگان

چکیده

This study contributes to establish the dynamic reconfiguration integrated optimization model of active distribution network (ADN) and proposes a novel solving approach based on multi-objective sparrow search algorithm. Distributed generation time-varying load have an important impact promoting sustainable development reducing energy loss. Therefore, this aims investigate ADN problem in consideration distributed improve power quality, economic benefits. First, algorithm is proposed aiming at multi-objective, multi-constraint, non-linear high-dimensional problem, superiority verified. Second, mathematical constructed. Finally, multi-scenario test conducted classic system verify effectiveness method, compromise solution determined through technique for order preference by similarity ideal (TOPSIS). The result shows that method effectively reduces loss node voltage deviation 75.76% 70.06%. Accordingly, significance improving operational stability ADN, increasing penetration rate renewable production.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Reconfiguration of Distribution Network Using a Heuristic Modified Ant Colony Optimization Algorithm

In this paper, a multi-objective reconfiguration problem has been solved simultaneously by a modified ant colony optimization algorithm. Two objective functions, real power loss and energy not supplied index (ENS), were utilized. Multi-objective modified ant colony optimization algorithm has been generated by adding non-dominated sorting technique and changing the pheromone updating rule of ori...

متن کامل

Multi-objective Grasshopper Optimization Algorithm based Reconfiguration of Distribution Networks

Network reconfiguration is a nonlinear optimization procedure which calculates a radial structure to optimize the power losses and improve the network reliability index while meeting practical constraints. In this paper, a multi-objective framework is proposed for optimal network reconfiguration with the objective functions of minimization of power losses and improvement of reliability index. T...

متن کامل

multi-objective reconfiguration of distribution network using a heuristic modified ant colony optimization algorithm

in this paper, a multi-objective reconfiguration problem has been solved simultaneously by a modified ant colony optimization algorithm. two objective functions, real power loss and energy not supplied index (ens), were utilized. multi-objective modified ant colony optimization algorithm has been generated by adding non-dominated sorting technique and changing the pheromone updating rule of ori...

متن کامل

Probabilistic Power Distribution Planning Using Multi-Objective Harmony Search Algorithm

In this paper, power distribution planning (PDP) considering distributed generators (DGs) is investigated as a dynamic multi-objective optimization problem. Moreover, Monte Carlo simulation (MCS) is applied to handle the uncertainty in electricity price and load demand. In the proposed model, investment and operation costs, losses and purchased power from the main grid are incorporated in the f...

متن کامل

Network Reconfiguration in Distribution Systems Using Harmony Search Algorithm

This manuscript explores feeder reconfiguration in distribution networks and presents an efficient method to optimize the radial distribution system by means of simultaneous reconfiguration. Network Reconfiguration of radial distribution system is a significant way of altering the power flow through the lines. This assessment presents a modern method to solve the network reconfiguration problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2022

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2021.116445